
The Design and Implementation of Clocked Variables in
X10

Daniel Atkins, Alex Potanin, Lindsay Groves
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

{Daniel.Atkins,alex,lindsay}@ecs.vuw.ac.nz

ABSTRACT
This paper investigates the addition of Clocked Variables to
the X10 Programming Language. Clocked Variables work
well for primitives and objects with only primitive fields, but
incur substantial performance penalties for more complex
objects. We discuss ways to deal with these issues.

1. INTRODUCTION
Distribution and parallelization are an important part of
computing today; with the focus of processor manufacturers
turning away from higher speeds, and towards larger numbers
of cores, proper utilization of such resources is becoming more
and more important [11, 8]. Unfortunately, many current
programming languages don’t provide the necessary support
for easily writing thread-safe programs. To address this issue,
IBM have been developing a new programming language
called X10 [11, 10, 3]. X10 is a strongly typed, concurrent,
imperative, and object-oriented programming language, mak-
ing it quite similar to popular existing languages such as Java
and C++. X10 was designed with multi-core and clustered
systems in mind. The goal of X10 is to allow programmers
to easily produce code that can be distributed over multiple
cores and/or machines, with good scalability [8]. This means
that concurrent programs become much easier to write, as the
language has many built-in constructs to aid programmers
in achieving their goals [5].

Many concurrent algorithms maintain two states; a current
state and a next state. Operations are performed on the
current state, and the results cause the next state to be
updated. When the current state has been fully processed,
the next state becomes the current state, and the algorithm
continues. This can lead to code bloat, as maintaining these
two states requires some extra book-keeping, and there is a
risk of introducing bugs into a program by accidentally using
the wrong state when performing an operation.

Clocked Variables allow variables to have different states de-
pending on how they are used. This allows the prevention of

race-conditions as each thread is guaranteed a consistent view
of the clocked variables. This is achieved by requiring that up-
dates to a clocked variable do not become visible until every
thread has indicated that they are ready to progress to the
next state. In the case of clocked Primitives, this reduces the
requirement of having two explicit states to simply maintain-
ing a single object in memory that automatically performs
updates and state transitions at the appropriate times. More
interesting is the case of Clocked References, which require
a more complex clocking mechanism—it is these that we
investigate in this paper. We implement Clocked Variables
in X10, guided by the X10 Design Document [9]. While this
paper is written with X10 in mind, the concepts it presents
are applicable to any programming model that uses phased
execution controlled by barriers.

The rest of this paper is structured as follows: Section 2 intro-
duces the X10 Language, and details some of the language-
specific constructs that are required to understand this paper.
Section 3 discusses Clocked Variables, with a focus on how
Clocked References are handled. Section 4 describes the
experimental setup used to benchmark the performance of
clocked variables, and Section 5 evaluates the performance
of Clocked Variables. Section 6 gives further discussion of
the results, and the paper is then is concluded by Section 7.

The main contributions of this paper are:

• Extension of the X10 programming language to include
Clocked Variables,

• Case studies that use the new Clocked Variables,

• Performance evaluation of Clocked Variables in X10.

2. THE X10 PROGRAMMING LANGUAGE
X10 contains several language constructs that allow program-
mers to readily, and easily, write concurrent code [4]. Places,
which can be thought of as analogous to processes, provide a
shared memory environment in which concurrent code can
be executed. This memory is not shared between Places,
which allows Places to be parallelised, and distributed across
multiple machines. Within Places, concurrent execution is
achieved by the use of Activities, which are analogous to
Threads.

A Clock is an object that provides a programmer with a
means of synchronizing concurrently executing threads—an
important idea in a distributed system [7]. In X10, this
synchronization is achieved through the use of a barrier-style
structure based on Lamport’s Logical Clock [7]; the clock

object maintains a total count of the number of Activities
(threads) that have registered with the clock, and a separate
count of the number of activities that are currently active—
i.e, not currently waiting for the clock to advance to the
next phase. When an activity wishes to advance to the next
phase, the clock first decrements the count of alive activities,
and if this is zero, atomically advances the phase of the clock.
The calling activity is blocked by placing it in a loop until
the clock advances (busy-waiting).

Clocks in X10 maintain an invariant GlobalRef field that
refers explicitly to the original instance of the Clock, so that
no matter where any copies may end up, they can always
refer to the same Clock object. By forcing all updates to
the internal fields of the clock to always execute at the root
Clock object, the same state is seen by all copies of the
clock at all times—an important part of ensuring proper
synchronization!

X10 is built primarily as an extension to Java, using Polyglot
to handle the translation from X10 source code to Java
source code. X10 can also be compiled to C++ source code.
The X10 Runtime is written primarily in X10 itself, giving
it the ability to be compiled into one of several back-ends.
Currently, there is a Java-based runtime environment (using
the X10 Runtime as libraries for the JVM), a C++ based
runtime environment, and a CUDA (Compute Unified Device
Architecture—a parallel computing architecture developed by
Nvidia, that can be executed on GPUs) runtime environment.

3. CLOCKED VARIABLES
The clocked variables described in this paper are based on the
design outlined in the X10 Design Document [9]. There, the
intent is for only val (final variables that can be altered once
per clock phase) and stack local variables to be able to be
clocked, as dealing with object references was considered too
hard. The intent of this paper is to explore that claim and to
investigate if it is possible to have any form of variable able to
be clocked. Extensions are proposed in the Design Document
to allow methods, objects, fields and types to be clocked as
well; but we do not consider these in this paper. We deal
only with the idea of clocked primitives and references, and
how interactions with them might proceed.

A clocked variable is functionally similar to a normal, un-
clocked variable—a location in memory in which a primitive
value, or a reference to an object, is stored and can be ac-
cessed. However, in a clocked environment, a clocked variable
becomes quite different to an unclocked variable, in terms of
how and when it can be updated and accessed.

3.1 Design of Clocked Variables
During a single clock phase, the value of a clocked variable
remains fixed. If the variable is written to, or updated in
some way, the change does not become visible until the end
of the clock phase. Figure 1 gives an example of code that
demonstrates this.

We require that clocked variables only be written to once
during any given clock phase—writing to a clocked variable
more than once in a given clock phase is a runtime exception.
Clocked variables may be read any number of times during
a given clock phase, but we require that this value remains

c locked var i : Int = 5 ;
i = 6 ;
Console .OUT. p r i n t l n (i) ; //Prints 5
Clock . advanceAll () ;
Console .OUT. p r i n t l n (i) ; //Prints 6
i = 0 ;
Console .OUT. p r i n t l n (i) ; //Prints 6
Clock . advanceAll () ;
Console .OUT. p r i n t l n (i) ; //Prints 0

Figure 1: Example of Clocked Code

constant for the duration of the phase. If a clocked variable
is written to, or updated in any way, the new value must
take effect between the clock phases. The idea, then, is that
clocked variables provide the same functionality as manually
maintaining two separate states in a concurrent algorithm,
but without all of the extra book-keeping.

Only allowing one write per phase may appear to be an odd
design decision; primarily this was done to meet the proposal
for Clocked Variables given in the X10 Design Document [9].
However, that document specifies this behaviour for variables
marked with the keyword val—that is, variables that are
final, but when clocked, can be updated once per phase. In
this case, it is an error to write to the variable more than
once per phase, as the variables are final. Under clocking,
the original design allows such variables to be re-initialised
once per phase. We did not adhere strictly to this design, as
we allow the clocking of non-val variables, and allowing more
than one write per phase was considered. However, this limit
was deemed necessary to deal with some of the issues raised
by clocking reference types, as discussed later.

3.2 Clocked Primitive Types
The design of clocked variables started with primitives, as
they are conceptually easier to deal with than objects and
references. Our design for clocked primitives is based on the
outline for clocked vals given in the X10 Design Document,
but has been extended to cover non-local vars and fields as
required. We also depart from the Design Document in that
clocked primitives can still be used outside of a clocked envi-
ronment (ie: with a block encapsulated by clocked(Clock),
clocked finish, or clocked async)—they simply revert to
behaving like an unclocked variable of the appropriate type.

The basic design is that of wrapper classes—instead of deal-
ing with the primitive variable directly, all interactions are
abstracted away by “Clocked Primitive” objects that sit be-
tween the primitive variable and the rest of the program.
One of these wrapper classes is needed for each of the thirteen
primitive types available in X10.

The design of the wrapper classes is reasonably simple. Each
class contains two fields of the appropriate primitive type:
one to hold the current value of the clocked variable, and one
to hold the next value. Only two operations are supported
on clocked primitives:

read returns the current value of the clocked variable. Can
be performed any number of times.

write updates the next value of the clocked variable. Can
only be performed once per clock phase.

3.3 Clocked References
Like Clocked Primitives, Clocked References are expected
to maintain a constant value during a clock phase, and
then to update that value at the end of each clock phase.
Unlike Clocked Primitives, this is not a simple matter of just
executing current = next. Clocked References are not dealt
with in the design document, save for defining the concept
of a “clocked field” that might exist inside such an object.
Thus, the design for Clocked References is entirely our own,
and is based on the design of Clocked Primitives.

As a Clocked Reference must encapsulate a reference type
(not a primitive), using generics to describe a general“Clocked
Reference” was deemed the best approach. The bigger issue
is that an object may contain references to other objects.
Clearly updating such a complex structure would not be a
simple task. So, how do we successfully update a Clocked
Reference?

Figure 2: A clocked LinkedList behaves oddly under
a call to add(node)

The answer is not simple. Figure 2 shows the behaviour of a
clocked LinkedList during a call to add. Notice that we have
a clocked reference to the head of the list. A call to add a
node to the list, executed on the head node, adds a node to
the list—but this alteration is not visible yet, as any reads of
the graph are done from the current state, and the alteration
is performed on the next state. Another add call is made;
how do we resolve this? We need to ensure that we have
access to a up-to-date version of the list, but the first change
has not yet been commited. We cannot set the next field of
the Node correctly, and the list enters an inconsistent state.
Ideally, we would require all such alterations to be performed
on a version of the graph that is kept up-to-date. It becomes
clear that we cannot simply just maintain two states for the
object being referenced by the clocked reference; we need to
do this for the entire object graph it is connected to. But
how, then, do we propagate changes to the current state
when the clock advances?

There are many ways in which a Clocked Reference could
update its value—the simplest of which is a deep-clone of the
entire object graph. In fact, X10 readily provides a method
to perform exactly that operation; one which even takes
cycles into account. This is the method used in the design
of Clocked References within this paper, as time constraints
meant other avenues could not be fully explored. To avoid
issues caused by calling multiple updates on the graph in one
clock phase, the write operator was limited to only one write

per phase, as specified in the Design Document [9]. With the
näıve deep-cloning method of updating Clocked References,
however, it could be argued that this was unnecessary, as
the two states are completely separate object graphs. In the
interest of exploring more interesting update mechanisms,
however, we felt it was necessary to enforce this limit.

Having chosen a solution to the problem of updating a clocked
reference, we turn to the operations that can be performed
on a clocked reference. Immediately we can see that the
operations used with clocked primitives are not going to suf-
fice. Read still functions well enough, as it now just returns a
reference to the current value of the clocked reference. Write
proves a little more troublesome. We don’t want to support
an operation that replaces the next value wholesale—instead,
we want to be able to give out a reference to the next value
to allow programs to alter it in less destructive ways (such
as updating a field, or calling a method, etc). After some
consideration, it was decided that Clocked References would
not support any operations, as there was no easy way to
pass only the required changes to the graph as a parame-
ter. Instead, direct access to the current and next values
of the clock reference would be performed via method calls
(readableObject() and writableObject() respectively).

4. BENCHMARKS AND EVALUATION
The performance of both types of clocked variable was mea-
sured through the use of four benchmarks, each of which
tested a different form of reference type. Each benchmark
was implemented in two different ways; using the clocked
references described in Section 3, and not using clocked
references. For the “unclocked” case, synchronization and
state updates were handled manually—the term refers to
the absence of clocked variables, not the absence of clocks
themselves. Care was taken to ensure that all versions of the
benchmark programs operated correctly, and that the use of
clocked/unclocked references was the only difference between
the two versions of each benchmark. Each benchmark was
executed 100 times, on a range of different values. The results
shown here give the average values of those executions.

4.1 Conway’s Game of Life
Conway’s Game of Life is a fairly simple cellular automaton,
originally described by the mathematician John Conway
[6]. The automaton consists of a two-dimensional grid-based
world, with each cell of the grid having two states (dead or
alive). Cells live or die according to fixed rules that are only
reliant on the current state of the board. At each step, the
rules are applied simultaneously to each cell in the grid. This
is done in X10 by using the async structure to parallelise
the application of the rules to each cell. Each cell is given its
own thread, the state of each cell is calculated concurrently
with the state of each other cell.

This was implemented in X10 using an array of integers to
represent the grid. The clocked version used a single array of
clocked integers, and the unclocked version used two arrays
of normal integers (one to represent the current state, and
one to represent the next state). The update mechanism
for the unclocked version is essentially the same as for the
clocked version (but coded manually): a loop copies the value
from the next board state to the current board state.

0 200 400 600 800 1000

Size of grid (x by x)

0

20000

40000

60000

80000

100000

120000

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Unclocked
Clocked

Figure 3: Conway’s Game of Life: Clocked vs Un-
clocked execution times

Figure 3 gives the results for Conway’s Game of Life for
boards of various sizes. There is no significant difference
between the clocked version and the unclocked version. This
outcome was expected, as clocked and unclocked primitives
are both updated via the same mechanism—directly copying
the new value over the old value.

4.2 N-Body Simulation
An N-Body simulation is a physical simulation of a system of
many interacting particles. N-Body problems are computa-
tionally intensive, as calculating the next state of a particle
involves determining its interactions with every other par-
ticle in the system. Generally, these interactions take the
form of forces exerted between the particles—usually gravi-
tational (in the case of uncharged particles or large bodies,
like planets) or electrostatic (in the case of charged particles)
or both.

This benchmark was implemented as a N-Body system of
uncharged particles (i.e. the only interaction between the
particles was gravitational). The particles were represented
as a simple object with several primitive fields and an update
method. In the clocked version of this benchmark, these
particles were clocked. The update method executed on the
next state of the object, and wrote directly to the fields. In
the unclocked version, two additional fields had to be added
to hold the information required to update the particle, and
a new method, next() was added to the Particle class so this
update could be performed. Similar to Conway’s Game of
Life, this was done after ensuring that all of the next states
had been calculated.

Figure 4 shows the results for the N-Body Benchmark, for
various numbers of particles. As one would expect, execution
time scales with the number of particles present in the system
(as this is an O(n2) algorithm). Interestingly, however, the
clocked and unclocked versions clearly have a very different
gradient. The update mechanism for the clocked version is
a simple deep clone of the object (which only has primitive
fields—essentially a struct), whereas the update mechanism
for the unclocked version was method call on the object that
performed two minor calculations and updated the fields.

0 500 1000 1500 2000

Number of Particles in System

0

2000

4000

6000

8000

10000

12000

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Unclocked
Clocked

Figure 4: N-Body Simulation: Clocked vs Un-
clocked execution times

For smaller numbers of objects, the cloning method is much
faster, but the time cost increases at a faster rate than the
method-call update. The two methods are equal at around
800-850 objects, and the method-call update is faster for
object numbers above that. From the graph, it appears that
the method-call update has a constant cost associated with
it (hence it starting at a much higher y value). This may
be due to the update threads having to synchronize between
the calculation phase and the update phase—something that
doesn’t need to happen in the clocked version.

4.3 Sparse Matrix Convolution
A Sparse Matrix allows more compact storage by storing only
the non-zero values within the matrix. We used a linked-list
style structure, in which each row of the matrix is represented
by a single list. Rows are then linked by their first node.
This allows access to any cell within the matrix by following
the links from the root node.

In this benchmark, a sparse matrix was used to represent an
image which then had three filters applied to it via convolu-
tion. Much like Conway’s Game of Life, the “next” (in this
case “filtered”) state of a given pixel in the image is calculated
from the value of the pixel and its immediate neighbours,
and this must be done “simultaneously” for each pixel. The
difference here is one of representation; whereas Conway’s
Game of Life was an array of primitive integers, the images
used in this benchmark are represented by a complex linked
object structure. In the clocked version, the entire object
graph is clocked via the reference to the root node of the
matrix. In the unclocked version, it is necessary to update
the current image state by replacing the reference with a
reference to the next image state, and then re-initialising the
next state to be an empty matrix.

Figure 5 gives the results for Sparse Matrix Convolution.
Only a small number of points were sampled due to the
very long execution time of this benchmark—but enough
data were gathered to show that the clocked version of the
Sparse Matrix is vastly slower than the unclocked version.
Due to the single-write-per-phase nature of clocked variables,
the Sparse Matrix was very slow to update. Each thread

0 20 40 60 80 100 120 140

Size of Matrix (x by x)

0

20000

40000

60000

80000

100000

120000

M
e
a
n
 E

xe
cu

ti
o
n
 T

im
e
 (

m
s)

Clocked
Unclocked

Figure 5: Sparse Matrix: Clocked vs Unclocked ex-
ecution times

0 500 1000 1500 2000

Size of List

0

1000

2000

3000

4000

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Unclocked
Clocked

Figure 6: Linked List: Clocked vs Unclocked execu-
tion times

had to calculate the next value of its cells before any other
thread could actually write to the matrix (as each cell insert
necessitated a phase advancement, which—if peformed while
threads were reading—breaks the convolution algorithm).
After the values were calculated, each thread then inserts the
new cell, advancing the phase after each insertion. Obviously
this reduces the behaviour of the matrix to exactly that of
the unclocked version—but with the high overhead of having
to deep-copy the matrix at every clock advancement! Under
a single-write-per-phase scheme, complex objects seem to
perform quite slowly.

4.4 Linked List Microbenchmarks
For this benchmark, for linked lists of various sizes, the add
and remove methods were executed a number of times. This
benchmark mostly tests the overhead introduced by forcing
the clocked list to be updated after every method call, as
both were implemented in the exact same fashion, and both
required the clock to advance after every method called on
the list.

Figure 6 gives the results for clocked and unclocked Linked
Lists. We can see that the clocked version of this data
structure is much slower than the unclocked version. Every
add, every remove—every operation that changes anything
about the list—requires that the clock phase be advanced.
This overhead simply does not exist in the unclocked version!

So it while clocked variables seem to offer some sort of benefit
when used with primitives and objects with only primitive
fields, they incur performance penalties with more complex
data structures—at least, if we’re restricted to one write per
phase. Allowing multiple writes per clock phase might offer
some performance improvements.

5. ALTERNATE APPROACHES
It is obvious from the results presented in Section 5 that
the performance of certain applications (i.e. Linked Lists)
is heavily impacted by the inability to write to a clocked
reference multiple times per phase. Why is this a restriction?
If it can be shown that a given write is “safe”, then what
good reason is there for not allowing it? But before we can
discuss that, we should look at what it means to be “safe”.
A “safe” write is any write to any part of a clocked object
graph that (1) does not change the structure of the graph,
and (2) does not involve a value that has been written to
already during this phase. For example, it would be unsafe
to add or remove a node from a linked list of integers, but
it would be safe to alter the integer value store within a
node—provided that value has not already been changed this
phase. From this, we can immediately see that the Sparse
Matrix benchmark is not safe, as some operations change
the structure of the object graph (setting the value of a
previously zero entry to a non-zero value). This was taken
into account in the benchmark, and all updates to the object
graph are performed atomically and are immediately visible
to all threads—but this will not always be the case.

Once this difference in safety has been established, we can
amend the requirement of a clocked reference to only allowing
one unsafe write per clock phase. The issue then becomes
determining what is a safe update, and what is not. Ideally,
this would be done automatically by the compiler with no
extra work required on the part of the programmer—but
this would be require a means of determining every possible
interaction that could occur with an object. Certainly possi-
ble for very simple objects, but the difficulty escalates quite
rapidly.

5.1 Two Possible Approaches
Consider Figure 7. Under this approach, each object is
individually clocked, allowing multiple updates to occur to
the list—provided the updates don’t affect the same object
twice. Consider the example shown in the Figure: adding an
item into a linked list cannot be safely done more than once
per clock phase, as the second add operation simply cannot
know about the previous addition, as it uses the readable
versions of the objects to determine the current state of the
list—these versions of the objects do not have any links to
the new node! Thus the add operation replaces the next
pointer of the old last node with a pointer to the second
new node, erasing the first new node from the list. Multiple
writes are unsafe under this approach.

Figure 7: Approach 1: Clocking objects individually

A second approach (Figure 8) attempts to solve this problem
by splitting the object graph into two disparate graphs: a
writable graph and a readable graph. This is the approach
to Clocked References used earlier in this paper. We can see
that doing this solves the issue of data loss, as each write
operation is performed on the writable object graph, which
is always the most up-to-date version of the object. The
add operation is safe here, as the entire operation uses the
writable object graph. But what about other operations? If
we were maintaining a sorted list, adding a new node may not
be safe, especially if the location that a node must be inserted
is determined prior to calling any methods on the writable
graph—instead, the location would be determined by the
readable object graph, and so multiple additions—while no
data would be lost—may result in the list no longer being
sorted. We also see that this approach is not thread-safe, as
multiple threads attempting to add nodes to the list would
be prone to the usual issues of concurrent lists. To eliminate
this, we must then state that every thread that wishes to
use the writable object graph must obtain a lock on the root
node in order to proceed. Thus every write is atomic and
uninterruptable—but we have sacrificed parallelisation. This
becomes a large issue with problems like the Game of Life, or
image convolution: if each thread is only updating one node,
and no node is being updated by more than one thread, then
why shouldn’t the threads be able to do this concurrently?

5.2 Two Better approaches
We can build on the first approach outlined above in order to
make it slightly safer: we require that each thread lock the
objects it needs to update. While these objects are locked,
the thread uses the writable version of the object for all
operations. This ensures that no data is lost, but brings
new difficulties in ascertaining which objects a thread needs
to lock in order to perform the operation successfully. It
also raises concurrency issues: deadlock needs to be avoided,
as it could be caused by two threads needing the same two
objects, and locking them in different orders.

(a) Linked List with root node clocked

(b) Insert called

(c) Clock Advanced

Figure 8: Approach 2: Single point-of-entry, clock-
ing entire object graph

Our final approach attempts to solve this deadlocking prob-
lem by providing a single point of entry, similar to the second
approach outlined above. When a thread needs to lock ob-
jects, it first locks the root object; thus any thread that
needs to lock objects within the graph can do so without
interfering with any other threads. This doesn’t solve the
issue of multiple threads needing to write to the same object.
In this case, such a thread must wait until the next clock
phase. So, what do these approaches look like in practice?
A working implementation has not yet been developed, but
Approach 3 lends itself well to simulation.

Figure 9 shows, we still cannot perform sparse matrix convolution—
at least, not with this representation of sparse matricies. To
understand this, we need to take a closer look at what is
happening when a cell is updated. In the example shown,
thread 2 is tasked with updating cell (0,1). To do this, it
must first read cells (0,0), (0,1), (0,2), (1,0), (1,1), and (1,2).
The result (1.00) is then written into cell (0,1)—but cell
(0,1) does not currently exist in memory. So, the root of the
matrix must be written to so that the cell can be inserted.
The root holds a reference to the first non-zero cell in the first
non-zero row, so currently it is pointing to cell (1,1). This
reference needs to be updated, so we acquire a write-lock on
the root node and insert the new cell.

Then, thread 1 attempts to update cell (0,0) via the same
process. As this cell is before (0,1) in the row, the root needs
to be updated again. Note that we have not yet advanced the
clock. This requires obtaining a write-lock on the root, which
an exception as the root has already been written to during
this phase. We cannot solve this problem by advancing the
clock before inserting (0,0), as this breaks the convolution
algorithm. Cell (0,1) would be inserted into the matrix, and
would thus affect any threads that have not yet read the old
value of that location.

Figure 9: A Sparse Matrix Convolution

0 100 200 300

Size of Matrix (x by x)

0

100

200

300

400

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

First Advancement
Second Advancement
Third Advancement

Figure 10: Clock Advancement Performance for a
Sparse Matrix

A solution could be to require all threads to perform their
reads before any thread can write to the matrix. This would
break each clock phase into two sub-phases—a read phase
and a write phase. During this write phase, the clock can be
advanced any number of times, as the old values are no longer
required by the updating threads. However, this would result
in the same level of performance as shown in Figure 5, as
clock advancement is costly for a sparse matrix (Figure 10).
It also renders the object unsafe to read from during the
write phase, so any threads external to this process would
be forced to wait until the update process had finished in its
entirety.

As we can see from Figure 11, the performance of Sparse
Matrix Convolution is much improved—but this relies on a
safe way to update the matrix.

Another solution, perhaps, is to implement things in a safer
way. If a Sparse Matrix were implemented such that the
first cell in each row was always present, even if zero-valued,
a lock could be acquired on an entire row of the matrix,

0 100 200 300

Size of Matrix (x by x)

0

1000

2000

3000

4000

5000

6000

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Unclocked
Clocked

Figure 11: Using Approach 3 to solve the Sparse
Matrix Performance Issue

making structural changes safer. This would require that
each row be updated strictly by one thread, so we have lost
some concurrency here—but the performance would surely
be better.

5.3 Related Work
The basic concept underlying clocked variables is not a new
one. Software Transactional Memory (STM) [12] provides
database-like transactions for operations on shared mem-
ory. A transaction consists of one or more write operations
performed on an object, which is then committed once the
transaction is complete, causing an atomic update on the
object to be performed. Transactions can be aborted at any
time, and the pending changes are lost. This is similar, in
many respects, to how Clocked Variables work—with some
key differences. Both operate in a ”phased” fashion; for STM,
these phases are transactions, and for Clocked References,
the phases are literal clock phases. Both maintain the old
version of the memory location for reading purposes during
these phases, and both ”commit” changes to memory at the
end of each phase.

For X10 specifically, there has been work to develop Phasor
Accumulators [13]. These accumulators provide support for
the accumulation of multiple values during a single clock
phase (thus allowing multiple updates to a value) while
maintaining the value from the previous state for reading
purposes—similar to the Clocked Variables described in this
paper. However, Phasor Accumulators were only designed
with Number types in mind, and do not address Reference
Types.

The use of revisions and isolation types [1] offers a similar
functionality to the scheme presented in this paper. Program-
mers can declare data they wish to be shared between tasks
by using isolation types. Tasks are then executed and merged
using revisions: isolated instances that can only read and
modify the shared data locally. When the tasks are finished,
the runtime merges the results, automatically resolving any
conflicts that occur. The result is a concurrent programming
model that can distribute and share data without concern
over concurrent modifications, and successfully merge this

shared data back into a coherent whole. Under such a scheme,
it would be possible to split an array (such as in the Game
Of Life case study) across multiple tasks, have each task
read and update their assigned cells, and have the array
merged successfully back into a consistent board state. Such
a process may be used to provide high-performance concur-
rent programs [2] that greatly improve upon the expected
performance gained by parallelization alone. However, it
is unclear how Revisions handle complex object graphs, as
this has not been specifically addressed; nor does it seem to
address the case where objects have reference types as fields.

6. CONCLUSION
Clocked Primitives are the most viable form of clocked vari-
able presented in this paper, and offer no significant change
in performance. The benefit gained from using them is a
cleaner way of updating dual-state variables often found
inside concurrent code.

Clocked References, however, were the main focus of this
paper. While our initial attempts at solving this problem
were not entirely successful, we have presented our results
and offered insights into what could be done to solve this
issue. There are many options for future work with Clocked
References, and many new avenues to explore.

The implementation presented in this paper is available from
http://ecs.vuw.ac.nz/~atkinsdani1/x10-clocked.tar.gz.

7. REFERENCES
[1] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent

programming with revisions and isolation types. In
OOPSLA, pages 691–707, New York, NY, USA, 2010.
ACM.

[2] S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and
T. Ball. Two for the price of one: A model for parallel
and incremental computation. In OOPSLA, Portland,
Oregon, October 2011.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA, pages 519–538, New
York, NY, USA, 2005. ACM.

[4] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10:
Programming for hierarchical parallelism and
non-uniform data access (extended).

[5] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: an
experimental language for high productivity
programming of scalable systems (extended abstract).
In P-PHEC, February 2005.

[6] M. Gardner. The fantastic combinations of John
Conway’s new solitaire game ’Life’. Scientific American,
223:120–123, Oct. 1970.

[7] L. Lamport. Ti clocks, and the ordering of events in a
distributed system. Commun. ACM, 21:558–565, July
1978.

[8] P. Murthy. Parallel computing with X10. In Proceedings
of the 1st international workshop on Multicore software
engineering, IWMSE ’08, pages 5–6, New York, NY,
USA, 2008. ACM.

[9] V. Saraswat. X10 design notes. https:
//x10.svn.sf.net/svnroot/x10/documentation/

trunk/x10.man/v2.2/design-notes/design-v08.txt,
April 2011.

[10] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove. X10 language specification.
http://dist.codehaus.org/x10/documentation/

languagespec/x10-221.pdf, September 2011.

[11] V. A. Saraswat, V. Sarkar, and C. von Praun. X10:
concurrent programming for modern architectures. In
PPoPP, pages 271–271, New York, NY, USA, 2007.
ACM.

[12] N. Shavit and D. Touitou. Software transactional
memory. In PODC, pages 204–213, New York, NY,
USA, 1995. ACM.

[13] J. Shirako, D. Peixotto, V. Sarkar, and W. Scherer.
Phaser accumulators: A new reduction construct for
dynamic parallelism. In IEEE International Parallel
and Distributed Processing Symposium, may 2009.

