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Abstract
Dataflow networks have gained renewed attention in recent years,
with application in various forms of stream processing. This posi-
tion paper considers motivation for an approach to supporting the
dynamic update of portions of a dataflow network, in the context
of static scheduling of such networks. A semantics for dynamic
dataflow graph update ensures that correctness of a network execu-
tion is preserved under such dynamic updates, where static schedul-
ing places a bound on the amount of buffering required in the exe-
cution.

1. Introduction
Dataflow or stream processing is becoming increasingly important,
with the growing prevalence of signal, video and audio process-
ing, particularly on mobile devices. Dataflow processing is a good
match with multicore and GPGPU parallel architectures that are
now prevalent on desktop computers, and will shortly be available
on consumer mobile devices. The data parallelism of such archi-
tectures is at least potentially a good match with the demands of
stream processing applications.

A plausible scenario for long-lived parallel stream processing is
the need to be able to update these applications “on the fly.” Al-
though much signal processing is now performed in hardware, the
clear trend is towards more and more of this to be done in soft-
ware. A key motivation is application flexibility, e.g., the need to
be able to adapt to new signal processing algorithms and proto-
cols. Another motivation provided by parallelization is that it may
be useful to be able to reorganize dataflow nets, based on profiling
data available at run-time that may reflect characteristics of the in-
put data as well as contention for resources from other applications
on the same device.

We have developed a semantics for dataflow computations with
dynamic module update. Our starting point is a computational
model similar to that originally proposed by Kahn [2]. This pro-
vides for a network of sequential actors, each implemented in a
conventional sequential language such as C or Algol. Actors are
connected by communication buffers on which they can send and
receive data. A key point is that actors cannot nondeterministically
select among inputs on several input channels, nor can they test
input channels for available inputs (so polling cannot be imple-
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mented). This restricts each actor to a completely deterministic se-
mantics. The combination of implicit parallelism and deterministic
execution makes dataflow computation a good fit with some of the
current thinking of how best to successfully exploit the parallelism
available in modern multicore and GPGPU architectures, in those
domains where the dataflow paradigm is applicable.

Kahn process networks have not seen widespread use in ap-
plication development. One of the issues is that, because of the
restriction to deterministic semantics, buffers may grow without
bound. For example, if an actor is performing the merge of two
input streams, and data is consistently arriving faster on one input
channel than on another, then the input buffer for the faster pro-
ducer will grow as data backs up there. It is tempting to relax the
determinism restriction, but this must be done carefully, if the result
is to have a well understood semantics that the application devel-
oper can use to reason about program execution. For example, early
semantics of nondeterminism for Kahn networks were not contin-
uous.

In the embedded systems and digital signal processing commu-
nity, a very useful class of restricted Kahn networks has been iden-
tified, the so-called synchronous dataflow (SDF) [3] networks. SDF
networks enable static scheduling for multi-rate applications. More
recently, new domain-specific languages such as Streamit [4] have
been defined, based on the principles of SDF, but also providing
support for compiling programmer code to run on modern parallel
architectures.

Fig. 1(a) considers a three-stage dataflow graph, where we as-
sume that the underlying program is to executed on a quad-core
processor. The first stage involves twelve computation steps that
can be parallelized into four parallel processes, each executing
three steps. There are two intermediate stages that can be executed
in parallel, each involving two computation steps. Finally the third
stage involves twenty computation steps, parallelized into five steps
performed by four actors executing in parallel.

Fig. 1(b) considers a variation on this scenario, where the first
stage is parallelized into three actors instead of four, and the two
intermediate stage are executed on the fourth processor. Although
the intermediate stages depend on the results from the first stage,
they can be executed in parallel with that first stage by pipelining
the dataflow execution, processing the second stage of a cycle of
the execution of the dataflow graph in parallel with the first stage
of the next cycle of the execution of the dataflow graph.

Fig. 1(c) considers another variation, this time where the graph
is being executed on two processors instead of four. This may be
necessary as a power-saving measure, for example, shutting down
some of the processors to save battery life. An example motivation
for dynamic update is to change the dataflow graph to accomodate
these kinds of runtime changes, while ensuring that the interfaces
between sections of the dataflow graph continue to be supported by
their replacements.
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(a) Data Parallelism

(b) Pipeline Parallelism

(c) Reduced Parallelism

Figure 1. Pipeline and Data Parallelism

Our goal is to provide a type system that can describe points
in the execution of a dataflow graph where parts of the graph can
be executed. For example, we wish to be able to support the safe
transition of a dataflow graph from that in Fig. 1(b) to that in

Fig. 1(c). One strategy is simply wait for the termination of the
execution of the dataflow graph, and start the next execution of the
dataflow graph under the modified configuration. However we may
not have the luxury of being able to wait, for example if power
consumption needs to be reduced immediately.

Our strategy is to allow applications to set breakpoints in the
execution of the dataflow graph. At one such breakpoint, an actor
may accept a new code update, an actor body that is activated and
replaces the running actor, binding to the communication channels
that the original actor was communicating on. The replacement
actor has the responsibility of continuing to support the external
interface provided by the original actor. We enforce this using
the notion of flowstate, a type-level mechanism for checking that
dataflow actors provide a given firing behavior, described in the
next section.

One simplifying assumption might be to restrict such updates
to each iteration of the top-level loop of an actor, but the example
in Fig. 1 demonstrates that the definition of the top-level code for
an actor is a malleable notion. For example, even for a single-
threaded atomic actor, loop unrolling will duplicate the top-level,
and preserving the original update behavior will require duplicating
a top-level update point for each loop unrolling. Our approach is
not to place any restriction on where such an update point occurs
in an actor, only that the update must preserve the interface of the
original actor.

We use the term “actor” to refer not just to a single atomic
dataflow actor, but also to an arbitrarily complicated dataflow graph
resulting from connecting several actors together, using a compo-
sitional notion of dataflow [1]. In general, an actor will offer data
channels on which it sends and receives data. In addition in our
model it offers several points at which the actor may be updated.
Each update point has a flowstate reflecting the constraints on the
replacement actor (which may be atomic or composite). Data chan-
nels are internalized as actors are linked together, and cannot be
elided. Update channels remain available on a “control plane” to
controller actors that trigger updates. Unlike data channels, update
channels can be elided from actor interfaces, reflecting a willing-
ness to forego the ability to perform some updates.

As the example in Fig. 1 demonstrates, in general it is not suf-
ficient to simply replace a single actor. Rather we may wish to re-
place a section of a dataflow graph in parallel. For example, in the
graph in Fig. 1(b), we may want to set update points at the inter-
mediate points of execution in the three “A” agents, and between
the executions of the “B” and “C” agents. The general rule is that
a set of update points in an dataflow graph should be a “consistent
cut,” with in particular no dependencies between the update points.
Updates then become a form of barrier synchronization: a collec-
tion of updates is offered in parallel on a consistent cut of update
points in a dataflow graph. The actors executing in the graph block
at an update point if an update has been offered, and the update
is finally executed when all the affected actors have reached their
update points.
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