
Open issues in
extensible libraries

Aaron Turon
Northeastern University

Thursday, June 14, 2012

Object 1
private lock

Foo(x)

Object 2
private lock

Bar(x,y)

Thursday, June 14, 2012

Object 1
private lock

Foo(x)

Object 2
private lock

Bar(x,y)

atomic {
o1.Foo(x);
o2.Bar(x, y);

}

Thursday, June 14, 2012

Object 1
lock-free

Foo(x)

Object 2
lock-free

Bar(x,y)

Thursday, June 14, 2012

Object 1
lock-free

Foo(x)

Object 2
lock-free

Bar(x,y)

atomic {
o2.Bar(o1.Foo(x), y);

}

Thursday, June 14, 2012

Object 1
private lock

Foo(x)

Object 2
lock-free

Bar(x,y)

Thursday, June 14, 2012

Object 1
private lock

Foo(x)

Object 2
lock-free

Bar(x,y)

atomic {
o2.Bar(o1.Foo(x), y);

}

Thursday, June 14, 2012

Channel
A

Channel
B

Thursday, June 14, 2012

Channel
A

Channel
B

atomic {
(receive(A), receive(B))

}

Thursday, June 14, 2012

Channel
A

Channel
B

Channel
C

Thursday, June 14, 2012

Channel
A

Channel
B

Channel
C

Thursday, June 14, 2012

Object 1
lock-free

Foo(x)

Thursday, June 14, 2012

Object 1
lock-free

Foo(x)

atomic {
if (o1.Foo(x) == null)
 block;

}

Thursday, June 14, 2012

Cards on the table
• Assumption: programmers will use a

mixture of concurrency paradigms

• Assumption: programmers want to
compose code they do not control

• Conclusion: the semicolon is not enough

Thursday, June 14, 2012

A (big!) open issue:
How do we support

abstraction and composition
across multiple paradigms,

without sacrificing performance?

Thursday, June 14, 2012

My stake in the ground:

“Reagents”

Thursday, June 14, 2012

swap
upd
f

R

S
+

R

S
*

Message passing Shared state

Disjunction Conjunction

Thursday, June 14, 2012

class TreiberStack [A] {
 private val head = new Ref[List[A]](Nil)
 val push = upd(head)(cons)
 val tryPop = upd(head)(trySplit)
 val pop = upd(head)(split)
}

Thursday, June 14, 2012

class TreiberStack [A] {
 private val head = new Ref[List[A]](Nil)
 val push = upd(head)(cons)
 val tryPop = upd(head)(trySplit)
 val pop = upd(head)(split)
}

class EliminationStack [A] {
 private val stack = new TreiberStack[A]
 private val (send, recv) = new Chan[A]
 val push = stack.push + swap(send)
 val pop = stack.pop + swap(recv)
}

Thursday, June 14, 2012

Lessons from reagents
• Make composition is pay-as-you-go,

e.g., kCAS only when you use it

• Fully embrace underlying paradigms, even if
it requires escape hatches

• Restrained ambitions: some compositions
are illegal (i.e., ceci n’est pas une STM)

Thursday, June 14, 2012

Isolation
Shared state

Interaction
Message passing

But there’s more to learn

Thursday, June 14, 2012

(A very small part of)
The design space

Join
calculus

CML STM

Thursday, June 14, 2012

(A very small part of)
The design space

Join
calculus

CML STM

Transactional events

Communicating transactions

Thursday, June 14, 2012

