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Object 1
private lock

Foo(x)

Object 2
private lock

Bar(x,y)
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Object 1
private lock

Foo(x)

Object 2
private lock

Bar(x,y)

atomic {
o1.Foo(x);
o2.Bar(x, y);

}
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Object 1
lock-free

Foo(x)

Object 2
lock-free

Bar(x,y)
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lock-free

Bar(x,y)

atomic {
o2.Bar(o1.Foo(x), y);

}
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Object 1
private lock

Foo(x)

Object 2
lock-free

Bar(x,y)

atomic {
o2.Bar(o1.Foo(x), y);

}
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Channel
A

Channel
B

atomic {
(receive(A), receive(B))

}
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Object 1
lock-free

Foo(x)
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Object 1
lock-free

Foo(x)

atomic {
if (o1.Foo(x) == null)
  block;

}
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Cards on the table
• Assumption: programmers will use a 

mixture of concurrency paradigms

• Assumption: programmers want to 
compose code they do not control

• Conclusion: the semicolon is not enough
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A (big!) open issue:
How do we support 

abstraction and composition
across multiple paradigms,

without sacrificing performance?
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My stake in the ground:

“Reagents”
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Message passing Shared state

Disjunction Conjunction
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class TreiberStack [A] {
  private val head = new Ref[List[A]](Nil)
  val push   = upd(head)(cons)
  val tryPop = upd(head)(trySplit)
  val pop    = upd(head)(split)
}
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class TreiberStack [A] {
  private val head = new Ref[List[A]](Nil)
  val push   = upd(head)(cons)
  val tryPop = upd(head)(trySplit)
  val pop    = upd(head)(split)
}

class EliminationStack [A] {
  private val stack = new TreiberStack[A]
  private val (send, recv) = new Chan[A]
  val push = stack.push + swap(send)
  val pop  = stack.pop  + swap(recv)
}

Thursday, June 14, 2012



Lessons from reagents
• Make composition is pay-as-you-go, 

e.g., kCAS only when you use it

• Fully embrace underlying paradigms, even if 
it requires escape hatches

• Restrained ambitions: some compositions 
are illegal (i.e., ceci n’est pas une STM)
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Isolation
Shared state

Interaction
Message passing

But there’s more to learn
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(A very small part of)
The design space

Join 
calculus

CML STM
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(A very small part of)
The design space

Join 
calculus

CML STM

Transactional events

Communicating transactions
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