
Conditional Concurrency Combinators

Paweł T. Wojciechowski
Poznań University of Technology

Beijing, 13 June 2012



Motivations

Using low-level synchronization primitives is notoriously difficult and
error-prone.

Higher-level constructs were proposed; they can help to write correct
code, e.g. transactional memory avoids lock-induced deadlocks.

Do programmers need more control on synchronization policies?

Do we need a diversity of concurrency constructs?

If ’yes’, then we need to develop new concurrency models (or calculi)
to understand the foundations.

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 2 / 19



This talk (work in progress)

We designed a calculus of declarative synchronization which allows:

I a program and synchronization to be defined separately
I a global synchronization policy to be locally revoked
I sync policies to be declared for classes, objects, and expressions

Our design abstracts from any concrete implementation.

The actual implementation might use only a subset of the calculus for
efficiency or usability.

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 3 / 19



Simple policy declaration

Serializability using Java-like synchronized:

public class SyncCounter {
private int c = 0;
public synchronized void increment() { c++; }
public synchronized void decrement() { c--; }
public synchronized int value() { return c; }

}

Alternatively, we could use locks.

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 4 / 19



Simple policy declaration

Below the same program using concurrency combinators:

class SyncCounter {
c = 0
increment() {c := c+1}
decrement() {c := c-1}
value() {c}
sync SyncCounter.ANY isol [ANY]

}

No visible gain here.

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 5 / 19



Conditional synchronization policy

A shared buffer using synchronized:

public synchronized int get() {
int result;
while (items == 0)
wait ();
items --;
result = buffer[items];
notifyAll ();
return result;

}

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 6 / 19



Conditional synchronization policy

A shared buffer using atomic:

public int get() {
atomic (items > 0) {
items --;
return buffer[items];

}
}

e.g., based on transactional memory [Harris, Fraiser, OOPSLA ’03].

TM systems typically implement either:

I strong atomicity: atomicity guaranteed between transactions and
non-transactional code (safe but inefficient), or

I global weak atomicity: atomicity guaranteed among only
transactions (not safe in general).

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 7 / 19



Conditional synchronization policy

... or using atomic and retry:

public int get() {
atomic {
if (items > 0)
items --;
return buffer[items];
else
retry

}
}

e.g., TM in Haskell [Harris et al., PPoPP ’05].

Optimistic TM systems restrict the use of I/O operations in atomic
due to implicit (or explicit as above) rollback.

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 8 / 19



Strong and weak atomicity

A shared buffer using concurrency combinators:

class P {
int get() {
sync (items > 0) P.get isol [ X ] in
items := items - 1;
buffer[items]

}
}

We declare atomicity with respect to X using [ X ].

I if X=ANY then get is strongly atomic
I if X 6=ANY then weakly atomic for code 6= X

We give the choice to the programmers who may know better what
they need (hopefully).

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 9 / 19



Policy revocation

Let’s assume that get is strongly atomic, i.e. P.get isol [ANY].
If required, this global policy can be locally weakened.

E.g., we can revoke atomicity of get in expression e with respect to
method dirty read (any other code isn’t affected):

sync
P.get ! isol [Q.dirty_read]
in
e

X ! s [Y ] revokes any valid synchronization constraint s declared for

X with respect to Y .

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 10 / 19



Syntactic sugar and equations

Let p be either s or ! s. We use syntactic sugar:

I X p Y for X p [Y ] ∧ Y p [X]

I X p self for X p X

Some equations:

I X p Y ≡ Y p X

I X p [Y ] 6= Y p [X] (X 6= Y )
I X p [X] ≡ X p X

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 11 / 19



Complex policy declaration

Let’s declare the Readers-Writers synchronization policy for all objects
of class RW:

class RW {
v = 0
read () = { v }
write (x:Int) = {v := x}

sync RW.write isol RW.read ∧ RW.write isol RW.write
}

A lock-based implementation would be less intuitive and not easily
customized. A higher-level RW library would be OK (but less control).

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 12 / 19



Policy refinement locally

Suppose we want to locally customize RW synchronization, e.g., allow
concurrent writes and reads in expression e.

Below is the code using concurrency combinators:

let o = new RW in
sync
o.write ! isol o.read

in
e

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 13 / 19



The calculus of concurrency combinators

A call-by-value λ-calculus extended with classes and objects:

Variables x, y, z, o ∈ Var

Comb. arg. names A,B ∈ Lab

Class names P,Q ∈ Lab

Field names f

Method names m

Selector names n ∈ Sel ::= f | m
Types t ::= P | Unit | Boolean | t→ t′

Combinator args X, Y ::= e | e.ANY | P.n | P.ANY | ANY | X ⊕ Y | A

Combinators a, b, c ::= X isol [Y ] | X on [Y ] | X ! isol [Y ] | X ! on [Y ] |
a ∧ b | if e then a else b

Funct. abstractions F ::= x : t = {e}
Methods M ::= t m F

Classes K ∈ Class ::= class P {f1 = v1, ... , fk = vk, M1, ... ,Mn} |
class P {f1 = v1, ... , fk = vk, M1, ... ,Mn, es}

Values v, w ∈ Val ::= () | new P | true | false | F
Expressions e ∈ Exp ::= x | v | e.n | e e | let x = e in e | e := e | fork e | es
Sync. expressions es ∈ Exps ::= let A← X in e | sync (e)a in e

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 14 / 19



Nested atomic sections

Barrier synchronization implemented using atomic:

void barrier() {
atomic { count++; }
atomic(count == NUMTHREADS) {
/* Barrier reached */

}
}

atomic {
... barrier(); ...

}

Closed-nesting? => safety guaranteed but deadlock!

Open-nesting? => more flexible but not safe

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 15 / 19



Nested atomic blocks

The same program using our language:

class P {
barrier() = { /* e.g., code as before */ }
m() = {
...
barrier()
...

}

sync P.m isol [ANY] ∧ P.m ! isol [P.barrier]

}

If any invariants protected by atomic do not depend on variable
count, they (most likely) are not invalidated by policy revocation.

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 16 / 19



Nested atomic blocks

The same program using our language:

class P {
barrier() = { /* e.g., code as before */ }
m() = {
...
barrier()
...

}

sync P.m isol [ANY] ∧ P.m ! isol [P.barrier]

}

If any invariants protected by atomic do not depend on variable
count, they (most likely) are not invalidated by policy revocation.

We would like to be able to verify this statically (safety).

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 17 / 19



Barrier synchronization combinator

We can use a barrier combinator on to declare barrier synchronization
on any variable (below we use a variable barrier):

sync o.barrier on self in
e

where e spawns threads, each one executing:

if (o.barrier =< NUMTHREADS) then
o.barrier := o.barrier + 1; /* block on a write /*
e1
else
sync o.barrier ! on self in
o.barrier := 0;
e2

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 18 / 19



Conclusions and future work

Synchronization policy:

I can be declared separately from the main code
I can be declared with respect to classes, objects, and expressions
I can be locally revoked, e.g., to avoid deadlock

Future work:

A type system for safe local revocation of synchronization policy.

Paweł T. Wojciechowski ()Conditional Concurrency Combinators June 13, 2012 19 / 19


