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Abstract
In multithreaded object-oriented programs, locality refers to the dy-
namic scoping relation among threads and objects in a potentially
shared-memory context. This paper calls for type-theoretic investi-
gations into two forms of locality – thread locality and aggregate
locality – and proposes a unified type inference algorithm to reason
about them over unannotated real-world Java programs.

1. Introduction
The property of locality plays an essential role in understanding,
designing, verifying, optimizing, and debugging multithreaded pro-
grams. The term is perhaps most commonly used in the context of
thread locality – a memory location is thread-local iff it is accessed
by one and only one thread throughout all possible executions of
the program. The benefit of reasoning about thread locality is long
recognized. For example, it simplifies the reasoning of race condi-
tion freedom and atomicity, because access to thread-local data is
trivially thread-safe. Since runtime monitoring via locks or trans-
actions is unnecessary over thread-local data, precisely identify-
ing thread-local data further improves system performance, and re-
duces the occurrence of liveness bugs such as deadlocks and live-
locks. Numerous program analyses and language designs exist for
analyzing and enforcing thread locality.

When a memory location cannot be thread-local, does that mean
we can only pessimistically label it “escaped,” and no further in-
sight can be gained? We believe at least one more important flavor
of locality exists: aggregate locality. Here, an aggregate can be in-
tuitively viewed as a “shared cluster of data”: any object within
the aggregate is accessed by more than one thread, but all accesses
must go through some “root” of an aggregate to which the afore-
mentioned object is local. We illustrate this notion as below:
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Compared with the established property of thread locality, rea-
soning about aggregate locality over real-world unannotated Java-
like programs is lesser explored. Reports on the number of thread-
local objects in standard multithreaded benchmarks (e.g. xalan or
hsqldb in Dacapo) have long appeared, but simple questions such
as “how many non-thread-local objects in xalan are aggregate-

local?” or “how many aggregates are there in xalan?” remain elu-
sive. Make no mistake: the benefit of reasoning about aggregagte
locality is long known to the language designers and software de-
signers. For example, when a cluster of data is transferred from one
thread to another, aggregate locality significantly simplifies the rea-
soning of thread safety by shifting the focus to the aggregate root:
it is sufficient to only monitor the root at run time, or only reason
about the uniqueness of its aliases [3]. For software developers, the
hierarchical structure of aggregates – if recoverable through intu-
itive visualizations – offers vivid clues in selecting the appropriate
granularity of locks [2].

2. Locality as Type Ineference
In this paper, we briefly report a type inference algorithm – named
LG – that precisely reasons about thread locality and aggregate
locality in one unified decision procedure. Given an unannotated
Java program, the algorithm not only answers how many (statically
differentiable) objects are thread-local, but also how non-thread-
local objects are organized in aggregates. For example, applying the
algorithm to the sharing-intensive benchmark puzzle [4] yields a
locality tree as rendered in Fig. 1 – with the root on the very left –
where each node represents an object (the colored ones are threads)
and each edge from parent x to child y denotes object y “is local
to” – i.e. never accessed outside the scope set by – object x. In
this representation, the algorithm guarantees the correctness of the
following statements:

• the Vector#124 object and the Vector#253 object are
thread-local to the SolverTask#var89 thread. and the
JGFPuzzleConcurrentBench#var12 object and its de-
scendants are thread-local to the Main thread;

• Puzzle#14 can be potentially accessed by more than one
thread, and it serves as the root of an aggregate including 9
objects– itself and its decedents – and the aggregate is nested
in the sense that PuzzlePosition#23 is the root of an
aggregate of size 6.

At its heart, LG is a form of polymorphic type inference of
ownership types [1, 7]. Indeed, the representation in Fig. 1 is the
inferred counterpart of a well-known relation enforced by owner-
ship types – ownership trees. As the example above demonstrates,
both thread locality and aggregate locality can be intuitively de-
rived from the ownership relation. We now elaborate on the unique
role LG plays, by relating LG in the contexts of ownership type
inference and points-to analysis, respectively.

LG in the Context of Ownership Type Inference Locality pre-
cision and soundness are challenging requirements when existing
ownership type inference solutions are applied to our problem do-
main.
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Figure 1. A Locality Tree Example

To elucidate the challenge of locality precision, let us revisit
the aggregate rooted at Puzzle#var14. Observe that an al-
ternative solution exists where the 3-level hierarchy of this ag-
gregate may be collapsed to 2, i.e. making all 8 descendants of
Puzzle#var14 its direct children. This alternative solution is
clearly less precise w.r.t. aggregate locality as it disregards that
PuzzlePosition#var23 may form a scope of its own. Worse,
yet another solution could collapse all objects on the entire tree
as the direct children of Global, de facto implying all objects
are “shared.” Existing approaches often solve this problem by re-
quiring programmer annotations to express preference, or narrow-
ing the scope e.g. by only inferring whether Java private field
declarations correspond with ownership. These solutions do not
naturally translate to the design goal of LG, i.e. inferring the all-
to-all ownership relation over all objects of an unannotated Java
program. LG tackles this challenging problem by reducing own-
ership type inference as a linear constraint solving problem – in-
spired by a prior work [5] – and expressing the preference for
locality through novel uses of objective functions in linear pro-
gramming. For example, the more desirable sub-tree for aggregate
PuzzlePosition#var23 would the one where the depth of
each node is as high as possible.

Another promising direction for ownership inference is to use
dynamic analyses. These approaches have the benefit of being pre-
cise, and their usefulness in understanding large real-world pro-
grams has been successfully validated. Their main shortcoming is
unsoundness, which happens to be bad news for multithreaded pro-
grams since there are often a very large number of interleaving
scenarios to consider, and hence numerous traces to analyze. We
speculate advanced testing technologies can perhaps mitigate this
problem, but unsoundness still would disqualify the analysis re-
sults from being applied in correctness-oriented settings, such as
optimizing programs with guaranteed race condition freedom.

LG in the Context of Points-to Analysis As demonstrated by es-
cape analyses and some non-type-based ownership/container pro-
gram analyses, properties such as thread/aggregate locality may
alternatively be reasoned about via points-to analysis. These ap-
proaches conceptually share the philosophy of first computing a
points-to graph, and then finding subgraphs that satisfy a particular
graph-theoretic invariant. Constructing scalable points-to analysis
with high approximation precision is an active branch of research.
In addition, when such an approach is used in reasoning about con-

current properties, as soundness is known to be dependent of a va-
riety of design choices e.g. may-alias vs. must-alias analyses, flow-
sensitive vs. flow-insensitive analyses, etc.

Along this line, LG can be viewed as a “custom-made” analysis
where the points-to graph is only implicitly encoded in type con-
straints and never explicitly computed. In other words, the points-
to graph contains more information that what locality reasoning
needs, and LG computes “just enough” and avoids the rest of
the unnecessary (points-to graph) computation. The resulting im-
plementation is a highly scalable algorithm. For example, we are
able to analyze hsqldb – a benchmark known to be resistant to
context-sensitive analyses [8] – with a precision analogous to 5-
object sensitivity [6]. In that (extremely) expensive setting, the in-
ference algorithm can approximate around 4000 instances and ter-
minate in around 16 minutes on an Intel Core Duo 2.53G Hz with
4GB RAM.

Reducing locality inference to an ownership type inference fur-
ther simplifies the analysis of the algorithm correctness, since type
soundness trivially entails the soundness of locality reasoning.
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