
Composable Asynchrony

Suresh Jagannathan
LaME-O-in-Waiting

Thursday, June 14, 12

Context

• Synchronous communication
★ Easy to reason about

★ Convenient to build composable communication protocols

• Asynchronous communication
★ Harder to reason about

✦ stack ripping to express callbacks

★ Added expressivity

✦ callbacks executed only when communication action completed

★ Not straightforward to see how we might compose different asynchronous actions

• Challenge:
★ Adding and reasoning about asynchrony shouldn’t compromise ability to build

composable protocols

2

safety

performance

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thursday, June 14, 12

Anatomy of an Asynchronous Action
Thread 1 Thread 2

C1 C1

C1

Thursday, June 14, 12

Anatomy of an Asynchronous Action
Thread 1 Thread 2

C1 C1

C1

v

Post
Creation

Thursday, June 14, 12

Anatomy of an Asynchronous Action
Thread 1 Thread 2

C1 C1

C1

v

Post
Creation

⌇

Thursday, June 14, 12

Anatomy of an Asynchronous Action
Thread 1 Thread 2

C1 C1

C1

v

Post
Creation

⌇

asynchronous
communication

Thursday, June 14, 12

Anatomy of an Asynchronous Action
Thread 1 Thread 2

C1 C1

C1

vv

Post
Creation

⌇

asynchronous
communication

Thursday, June 14, 12

Anatomy of an Asynchronous Action
Thread 1 Thread 2

C1 C1

C1

vv

Post
Creation

⌇

Post
Consumption

⌇

asynchronous
communication

Thursday, June 14, 12

Anatomy of an Asynchronous Action
Thread 1 Thread 2

C1 C1

C1

vv

Post
Creation

⌇ Post-creation: actions performed after an
asynchronous operation has been initiated

Post-consumption: actions performed after an
asynchronous operation has completed

Post
Consumption

⌇

asynchronous
communication

Thursday, June 14, 12

Example

4

spawn
send

f()
g()

Processor

recv

Connection
Manager

Orchestrator

choose

Thursday, June 14, 12

Example

4

spawn
send

f()
g()

Processor

recv

Connection
Manager

Orchestrator

choose

logReqStart

logReqEnd

Thursday, June 14, 12

Example

4

spawn
send

f()
g()

Processor

recv

Connection
Manager

Orchestrator

choose

logReqStart

logReqEnd

logConnStart

logConnEnd

Thursday, June 14, 12

The Problem

• Dichotomy in language abstractions
★ Asynchrony fundamentally expressed using distinct units of control

✦ either continuations (tasks) or threads

★ But, composability achieved through abstractions that should be thread
and continuation unaware

5

Thursday, June 14, 12

Desired Behaviour

6

Example Revisited

Orchestrator
choose

logConnStart

logConnEnd

logReqStart

async send

g() async completion

Processor
Connection
Manager

recv

f()

Thursday, June 14, 12

Desired Behaviour

6

Example Revisited

Orchestrator
choose

logConnStart

logConnEnd

logReqStart

async send

g() async completion

Processor
Connection
Manager

recv

logReqEnd

f()

Thursday, June 14, 12

Composable Callbacks (ACML)

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
 (‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
 let clocal = channel()
 in sWrap(aWrap(ev,
 fn x => (aSync(aSendEvt(clocal,x)); x)),
 fn _ => wrap(recvEvt (clocal), f))
 end

Synchronous first-class events Aynchronous first-class events

Thursday, June 14, 12

Composable Callbacks (ACML)

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
 (‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
 let clocal = channel()
 in sWrap(aWrap(ev,
 fn x => (aSync(aSendEvt(clocal,x)); x)),
 fn _ => wrap(recvEvt (clocal), f))
 end

Defines a post-creation action

Synchronous first-class events Aynchronous first-class events

Thursday, June 14, 12

Composable Callbacks (ACML)

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
 (‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
 let clocal = channel()
 in sWrap(aWrap(ev,
 fn x => (aSync(aSendEvt(clocal,x)); x)),
 fn _ => wrap(recvEvt (clocal), f))
 end

Defines a post-creation action

This action creates a new event that synchronously waits for a
value on clocal, and invokes f (the callback) on that value

Synchronous first-class events Aynchronous first-class events

Thursday, June 14, 12

Composable Callbacks (ACML)

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
 (‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
 let clocal = channel()
 in sWrap(aWrap(ev,
 fn x => (aSync(aSendEvt(clocal,x)); x)),
 fn _ => wrap(recvEvt (clocal), f))
 end

Defines a post-creation action

This action creates a new event that synchronously waits for a
value on clocal, and invokes f (the callback) on that value

Defines a post-consumption action

Synchronous first-class events Aynchronous first-class events

Thursday, June 14, 12

Composable Callbacks (ACML)

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
 (‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
 let clocal = channel()
 in sWrap(aWrap(ev,
 fn x => (aSync(aSendEvt(clocal,x)); x)),
 fn _ => wrap(recvEvt (clocal), f))
 end

Defines a post-creation action

This action creates a new event that synchronously waits for a
value on clocal, and invokes f (the callback) on that value

Defines a post-consumption action

This action asynchronously sends the
result of synchronizing on ev to clocal

Synchronous first-class events Aynchronous first-class events

Thursday, June 14, 12

Composable Callbacks (ACML)

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
 (‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
 let clocal = channel()
 in sWrap(aWrap(ev,
 fn x => (aSync(aSendEvt(clocal,x)); x)),
 fn _ => wrap(recvEvt (clocal), f))
 end

Defines a post-creation action

This action creates a new event that synchronously waits for a
value on clocal, and invokes f (the callback) on that value

Defines a post-consumption action

This action asynchronously sends the
result of synchronizing on ev to clocal

Can compose result of ev with other
event combinators

Synchronous first-class events Aynchronous first-class events

Thursday, June 14, 12

Instances
• ACML

• AC: Composable Asynchronous IO for Native Languages

★ composable post-creation actions via async and do ... finish constructs

• Reagents

★ combinators for extensible and composable concurrency abstractions

★ post-commit actions

• Asynchronous workflows in F# and C#

★ callbacks represented as continuations

• Monadic concurrency

★ reactive programming

★ interaction between applications and IO actions delivered asynchronously

• Asynchronous exceptions and kill-safe abstractions

• Asynchrony without stack-ripping

★ lightweight event handlers

★ Scala Actors, Kilim, Protothreads, Tame, Clarity, ...

8

Thursday, June 14, 12

Open Issues
• Composability and libraries

• Lightweight or heavyweight support for composability

• Interaction with legacy code

• Simplicity, modularity, orthogonality, ...

• Performance rationalization

• Interplay between synchrony and asynchrony

• Transformers (automatic)

• Typing

• Verification

• Memory model

• ...

9

reasoning

Thursday, June 14, 12

