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* Synchronous communication safety

Easy to reason about

Convenient to build composable communication protocols

* Asynchronous communication

Harder to reason about
4 stack ripping to express callbacks Performance
Added expressivity
4 callbacks executed only when communication action completed

Not straightforward to see how we might compose different asynchronous actions
* Challenge:

Adding and reasoning about asynchrony shouldn’t compromise ability to build
composable protocols
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Post-creation: actions performed after an
asynchronous operation has been initiated

Post-consumption: actions performed after an
asynchronous operation has completed

Thursday, June 14, 12



spawn
4’] send
¢g() l 0
Processor
Orchestrator

choose

recv

Connection
Manager

Thursday, June 14, 12



logReqgStart
recy
spawn
™ send <
+80 b0
logReqEnd
Processor Connection
Manager
Orchestrator
choose

Thursday, June 14, 12



logReqgStart
spawn
»I send <
locReqEnd
el Processor
Orchestrator
choose

logConnStart

recv

logConnEnd

Connection
Manager

Thursday, June 14, 12




The Problem

* Dichotomy in language abstractions

Asynchrony fundamentally expressed using distinct units of control
4 cither continuations (tasks) or threads

But, composability achieved through abstractions that should be thread
and continuation unaware
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Example Revisited
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Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
let Cioca1 = channel()
in sWrap(aWrap(ev,
fn x => (aSync(aSendEvt(Ciocai,X)); X)),
fn => wrap(recvEvt (Ciocai), f))
end
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Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

Defines a post-consumption action

fun callbackEvt (ev, f) = Can compose result of ev with other
let Ciocar = chann event combinators
in sWrap(aWrap(ev, g/,

fn x => (aSync(aSendEvt(Ciocai,X)); X)),
fn => wrap(recvEvt (Ciocal), f))
end

This action asynchronously sends the
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e ACML
* AC: Composable Asynchronous IO for Native Languages

composable post-creation actions via async and do ... finish constructs
* Reagents
combinators for extensible and composable concurrency abstractions
post-commit actions
* Asynchronous workflows in F# and C#
callbacks represented as continuations
* Monadic concurrency
reactive programming
interaction between applications and 1O actions delivered asynchronously

* Asynchronous exceptions and kill-safe abstractions

Asynchrony without stack-ripping
lightweight event handlers

Scala Actors, Kilim, Protothreads, Tame, Clarity, ...
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Open Issues

* Composability and libraries

* Lightweight or heavyweight support for composability

* Interaction with legacy code

* Simplicity, modularity, orthogonality, ...

e Performance rationalization

* Interplay between synchrony and asynchrony

* Transformers (automatic)

* Typing
e Verification

* Memory model

reasoning
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