PURDUE (2

Thursday, June 14, 12

* Synchronous communication safety

Easy to reason about

Convenient to build composable communication protocols

* Asynchronous communication

Harder to reason about
4 stack ripping to express callbacks Performance
Added expressivity
4 callbacks executed only when communication action completed

Not straightforward to see how we might compose different asynchronous actions
* Challenge:

Adding and reasoning about asynchrony shouldn’t compromise ability to build
composable protocols

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thread | Thread 2

Q

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thread | Thread 2

Post
Creation

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thread | Thread 2

Post
Creation

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thread | Thread 2

asynchronous
communication

Post
Creation

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thread | Thread 2

asynchronous
communication

Post
Creation

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thread | Thread 2

asynchronous
communication

Post

Post Consumption
Creation

e

i

Thursday, June 14, 12

Anatomy of an Asynchronous Action

Thread | Thread 2

asynchronous
communication

Post

Post Consumption
Creation

e

i

Post-creation: actions performed after an
asynchronous operation has been initiated

Post-consumption: actions performed after an
asynchronous operation has completed

Thursday, June 14, 12

spawn
4’] send
¢g() l 0
Processor
Orchestrator

choose

recv

Connection
Manager

Thursday, June 14, 12

logReqgStart
recy
spawn
™ send <
+80 b0
logReqEnd
Processor Connection
Manager
Orchestrator
choose

Thursday, June 14, 12

logReqgStart
spawn
»I send <
locReqEnd
el Processor
Orchestrator
choose

logConnStart

recv

logConnEnd

Connection
Manager

Thursday, June 14, 12

The Problem

* Dichotomy in language abstractions

Asynchrony fundamentally expressed using distinct units of control
4 cither continuations (tasks) or threads

But, composability achieved through abstractions that should be thread
and continuation unaware

Thursday, June 14, 12

Example Revisited

logReqStart logConnStart
async send recv
= —
g() async completion :
v Crrrrenns v Connection

Processor 0 Manager

logConnEnd
Orchestrator \
choose

Thursday, June 14, 12

Example Revisited

logReqStart logConnStart
async send recv
= —
g() async completion :
v Corerenns v Connection

Processor f0 Manager

logConnEnd
logReqENd
Orchestrator \
choose

Thursday, June 14, 12

Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
let Cioca1 = channel()
in sWrap(aWrap(ev,
fn x => (aSync(aSendEvt(Ciocai,X)); X)),
fn => wrap(recvEvt (Ciocai), f))
end

Thursday, June 14, 12

Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
let Cioca1 = channel()
in sWrap(aWrap(ev,
fn x => (aSync(aSendEvt(Ciocai,X)); X)),
fn => wrap(recvEvt (Ciocai), f))
end

Defines a post-creation action

Thursday, June 14, 12

Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

fun callbackEvt (ev, f) =
let Cioca1 = channel()
in sWrap(aWrap(ev,
fn x => (aSync(aSendEvt(Ciocai,X)); X)),
fn => wrap(recvEvt (Ciocai), f))
end

Defines a post-creation action

This action creates a new event that synchronously waits for a
value on Ciocal, and invokes f (the callback) on that value

Thursday, June 14, 12

Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

Defines a post-consumption action

fun callbackEvt (ev, f) =
let Cioca1 = chann
in sWrap(aWrap(ev,
fn x => (aSync(aSendEvt(Ciocal,X)); X)),
fn => wrap(recvEvt (Cioca1), f))
end

Defines a post-creation action

This action creates a new event that synchronously waits for a
value on Ciocal, and invokes f (the callback) on that value

Thursday, June 14, 12

Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

Defines a post-consumption action

fun callbackEvt (ev, f) =
let Cioca1 = chann
in sWrap(aWrap(ev,
fn x => (aSync(aSendEvt(Ciocal,X)); X)),
fn => wrap(recvEvt (Cioca1), f))
end

This action asynchronously sends the

result of synchronizing on ev to Cjocal
Defines a post-creation action

This action creates a new event that synchronously waits for a
value on Ciocal, and invokes f (the callback) on that value

Thursday, June 14, 12

Composable Callbacks (ACML)

Synchronous first-class events ~—> Aynchronous first-class events

callbackEvt : (‘a, ‘c) AEvent * (‘c -> ‘b) ->
(‘b Event, ‘c) AEvent

Defines a post-consumption action

fun callbackEvt (ev, f) = Can compose result of ev with other
let Ciocar = chann event combinators
in sWrap(aWrap(ev, g/,

fn x => (aSync(aSendEvt(Ciocai,X)); X)),
fn => wrap(recvEvt (Ciocal), f))
end

This action asynchronously sends the

result of synchronizing on ev to Cjocal
Defines a post-creation action

This action creates a new event that synchronously waits for a
value on Ciocal, and invokes f (the callback) on that value

Thursday, June 14, 12

e ACML
* AC: Composable Asynchronous IO for Native Languages

composable post-creation actions via async and do ... finish constructs
* Reagents
combinators for extensible and composable concurrency abstractions
post-commit actions
* Asynchronous workflows in F# and C#
callbacks represented as continuations
* Monadic concurrency
reactive programming
interaction between applications and 1O actions delivered asynchronously

* Asynchronous exceptions and kill-safe abstractions

Asynchrony without stack-ripping
lightweight event handlers

Scala Actors, Kilim, Protothreads, Tame, Clarity, ...

8

Thursday, June 14, 12

Open Issues

* Composability and libraries

* Lightweight or heavyweight support for composability

* Interaction with legacy code

* Simplicity, modularity, orthogonality, ...

e Performance rationalization

* Interplay between synchrony and asynchrony

* Transformers (automatic)

* Typing
e Verification

* Memory model

reasoning

Thursday, June 14, 12

