

A Design and Implementation of
Clocked Variables in X10

Daniel Atkins, Alex Potanin, Lindsay Groves

What is X10?

● X10 is a language currently being developed
by IBM

● It is designed to be used in highly concurrent
environments, such as on large clusters

● It contains many language features that make
writing and maintaining concurrent code much
easier

● Seems to be mostly for computation based
problems

What is X10?

● Similar to Java in a lot of ways
– Class-based OO

– Similar syntax for the most part

● Compiler doesn't translate directly to
executable byte-code / machine code

– Can translate X10 code into Java, C++, or
CUDA.

● Java back-end runs on the JVM and uses
special X10 Runtime Libraries

X10 – Sample Code
public class Summer{

val data:Array[Integer](1) = {…}

public static def main(args:Array[String](1)) {
var sum:Integer = 0;
finish{

for(var i in 0..4){
val j = i;
var local:Integer = 0;
async {

for(var x = j; x < j + data.length()/4;x++)
local += data(x);

atomic{sum += local;}
}

}
}
Console.OUT.println(“The sum is: “ + sum);

...

X10's Clocks

● X10 provides the Clock class to allow
synchronization between threads.

● It functions as a barrier: threads that wish to
continue with execution are blocked until all
threads are ready to continue.

S
Y
N
C
H

S
Y
N
C
H

S
Y
N
C
H

Phase 1 Phase 2 Phase 3

Clocked Variables

● Threads share memory!
● What if we have a variable we want all the

threads to be able to read, but one of the
threads updates it? (Example: Board State)

● This introduces race conditions!

S
Y
N
C
H

S
Y
N
C
H

S
Y
N
C
H

Phase 1 Phase 2 Phase 3

board[3]

Clocked Variables

● Could solve this problem by requiring all
threads to finish processing before updating

● Requires writing more code, and having extra
variables to store new state before we update.

● Can we do this automatically?

board[3]
next[3]

S
Y
N
C
H

S
Y
N
C
H

Phase 1a Phase 2a

S
Y
N
C
H

Phase 1b

Clocked Variables

● Within a single clock phase, the value of a
clocked variable should remain constant

● If a clocked variable is updated, this change
should occur when the clock phase changes.

Clocked Variables – Primitive Types

● Primitives are easy!
● Have a wrapper object that has two fields

(current and next) and write only into next, and
read only from current.

● Clock calls update method, which just copies the
value of next into current.

var x:ClockedInt = new ClockedInt(5); //Create a new Clocked Integer
x.register(); //Register x on the current clock
x() = 10; //WRITE 10 into x.
Console.OUT.println(x() + 1); //Prints 6
Clock.advanceAll(); //Advance the clock
Console.OUT.println(x()); //Prints 10

Clocked Variables – Reference Types

● Reference Types are a little trickier, as there is
a lot more state to deal with—we can't just
copy the value.

● Current solution uses a naïve method: deep-
cloning the object graph of the next field and
replacing the current field with the clone.

● Slow and inefficient, but it works and
establishes a baseline for comparing possible
improvements. Future work will deal with
finding a better way to do it.

● There are some other problems...

Clocked Variables – Multiple Writes?

To avoid situations like this, we limit the variable to only allowing one write per
phase.

Clocked Variables – Memory Usage?

● Nodes 1 and 3 are
clocked.

● That means there are
two complete copies
of each in memory.

● But node 3 is also part of node 1's graph!
● So there are two copies of node 3's graph per

copy of node 1's!
● Many duplicates. This explodes as you add more

clocked sub-graphs.

Two Possible Ways to Implement
Clocked Variables - GlobalRef

Two Possible Ways to Implement
Clocked Variables - HashMap

Clocked Variables – Benchmarks

● Four fairly simple benchmarks
– Conway's “Game of Life” (array of primitives)

– An N-Body Simulator (objects with primitive
fields only)

– Sparse Matrix (complex linked object structure)

– Linked List (typical linked object structure)

Conways Game of Life

Array of Primitives: Clocked
Version avoids the cost of array
allocation

N-Body Simulation

List of Objects with Primitive Fields:
unclocked version does 2 phases
(next, update), while clocked version
does one pass and relies on clock's
auto-update which gets slower and
slower as number of particles grows...

Sparse Matrix Convolution

Complex Linked Objects
Structure: clocked version has to
wait until next phase due to any
write as cannot automatically tell
if it is going to conflict with other
reads or not (it is not in this case,
but cannot tell automatically)...
Thus very very much slower...

Linked Lists

Simple linked list with adds and
removes, clocked version simply
captures the “clocked update
management” overhead that is
not present in the unclocked
version written in the same way...

Alternative Clocking Mechanisms
(here we are inserting 2 nodes)

Currently: Clocking Whole List (Full
Cloning)

Possible Approach: Clocking
Individual Objects but Manually
Managing Concurrency Problems :-(

1
st new node

2
nd new node

1st new node

2nd new node

Conclusion
Clocked Primitives are the most viable form of clocked
variable. The benefit gained from using them is a cleaner
way of updating dual-state variables often found inside
concurrent code.

Clocked References, however, presented more of a
challenge. While our initial attempts at solving this
problem were not entirely successful, we have presented
our results and offered insights into what could be done to
solve this issue. There are many options for future work
with Clocked References, and many new avenues to
explore.

http://ecs.vuw.ac.nz/~atkinsdani1/x10-clocked.tar.gz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

